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Abstract—Serverless edge computing is an efficient way to
execute event-driven, short-duration, and bursty IoT data pro-
cessing tasks on resource-limited edge servers, using on-demand
resource allocation and dynamic auto-scaling. In this paradigm,
function requests are handled in virtualized environments, e.g.,
containers. When a function request arrives online, if there is no
container in memory to execute it, the serverless platform will
initialize such a container with non-negligible latency, known as
cold start. Otherwise, it results in a warm start with no latency
in previous studies. However, based on our experiments, we find
there is a remarkable third case called Late-Warm, i.e., when
a request arrives during the container initializing, its latency is
less than a cold start but not zero. In this paper, we study online
container caching in serverless edge computing to minimize
the total latency with Late-Warm and other practical issues
considered. We propose OnCoLa, a novel O(T

3/2
c K)-competitive

algorithm supporting request relaying on multiple edge servers.
Here, Tc and K are the maximum container cold start latency
and the memory size, respectively. Experiments on Raspberry
Pi and Jetson Nano with OpenFaaS and faasd using common
IoT data processing tasks show that OnCoLa reduces latency by
up to 21.38% compared with representative lightweight policies.
Extensive simulations on two real-world traces demonstrate that
OnCoLa consistently outperforms the state-of-the-art container
caching algorithms and reduces the latency by 27.8%.

I. INTRODUCTION

Recently, the Internet-of-Things (IoT) has enabled new

applications for many domains, such as healthcare [1], public

transport [2], and the energy industry [3]. These applications

fundamentally rely on the processing of IoT data from IoT

devices like sensors, cameras, and vehicles [4]–[6]. However,

uploading IoT data to the remote cloud faces challenges

like privacy leaks, network congestion, and high transmission

latency. Since IoT data are usually generated far from the

cloud, edge computing is a natural alternative, which executes

IoT data processing tasks (IDPTs) on edge servers close

to the data sources [7]–[12]. IDPTs are event-driven, short-

duration, and have bursty workloads [13]–[15]. For instance,

an object detection and recognition task using a motion-

activated camera is triggered by motion, completes within 5
seconds, and experiences a surge in frequency when more

objects are detected [16], [17]. When executing IDPTs on

the resource (CPU, memory)-limited edge servers, it is chal-

lenging to handle the task bursts and prevent resource waste

during idle periods between tasks. Adopting the serverless

paradigm [18], which offers on-demand resource allocation

and dynamical auto-scale policy, is a promising approach for

executing IDPTs on resource-limited edge servers, which can

be called serverless edge computing [19]–[22].
Serverless computing, also known as Function-as-a-Service

(FaaS) has attracted attention from various communities, such

as data [23]–[28], networking [29]–[33], architecture [34]–

[37], and system [38]–[42]. In FaaS, developers can implement

tasks as functions, and execute functions within a virtualized
environment, such as a container. Before executing a function,

a container will go through an initialization, which involves

launching the container, preparing the program language run-

time, and installing necessary libraries. This initialization is

known as a cold start with non-negligible latency. If the
container is already initialized in memory before the function

request, it results in a warm start with no latency. One way
to mitigate cold starts is to cache initialized containers in

memory so that they are warm for future function requests.

However, caching containers in memory is costly, as about

50% of containers need more than 100 MB of memory [43].
Therefore, we need to investigate the container caching policy

that decides which containers should be cached in memory to

make full use of the limited memory and reduce the latency.

Container caching is a fundamental problem in serverless

computing, which is non-trivial due to variable memory de-

mands, diverse cold start latencies, and skewed function popu-

larity [43], [44]. When taking into account the practical issues

in edge computing, we reveal extra challenges as follows.

Late-Warm. In serverless computing, containers have to
suffer the cold start latency before they are fully initialized

in memory and ready to execute functions. Function requests

arrive in an online manner, meaning that we cannot get

future information and no assumption is made on the arrival

patterns. When a function request arrives during its container

initializing, which strictly is neither a cold nor a warm start,

we call this case Late-Warm, as shown in Fig. 1. Since Late-
Warm is non-negligible as it adds extra latency caused by a

cold start, the optimal policy (i.e., Bélády [45]) for traditional
online caching cannot be applied directly here, as shown in

Fig. 2. Moreover, traditional online caching mainly focuses

on files, each with a static size [46]–[48], while we cache

containers, each of which is much more dynamic, such as

its cold start latency discussed below and the memory size

occupied during its lifecycle in Sec. III. In our experiments
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Late-WarmL t W
Fig. 1. Late-Warm in serverless edge computing. ci represents the container used to execute fi, for 1 ≤ i ≤ 6. Before T0, containers c1, c2, c3, c4 and c5
have been initialized in memory. c6 starts initializing (i.e., cold start) at T1 until T5, and therefore the outcomes of requests arriving at T2,T3, and T4 are
all Late-Warm.

on edge devices, Late-Warm is more prevalent as the longer

cold start latency due to limited edge resources increases its

occurrences.

Late-Warm

Fig. 2. Bélády is Latency-suboptimal in online caching with Late-Warm.
In this example, the size of memory is 2, for any container, the memory
footprint is 1, and the initialization time is 4, that is, the initialization starts
at Ti and finishes at Ti+4. At T0, since c3 is initialized, one must choose
to terminate either c1 or c2. Bélády terminates c1. The result shows that
terminating c1 leads to a latency of 9, while terminating c2 results in a
latency of 4. Therefore, Bélády is Latency-suboptimal.

Memory Sensitivity. Edge servers are resource-limited,
e.g., Raspberry Pi 4B (PI4B) and Jetson Nano (Nano) have

CPU clock rates no higher than 1.5 GHz and main memory
no more than 8 GB. In our experiments in Example 1, we
observed significant variations in cold start latency and func-

tion execution time with different memory usage percentages.1

In addition, with a high memory usage percentage, function

requests might even result in failures.2 These dynamics in

latency introduce new challenges for container caching. More-

over, as illustrated in Fig. 3, the latency and request failure rate

might sharply increase at some specific memory usage in both

PI4B and Nano, further inspiring us to avoid such a sudden

increase adaptively.

1Memory usage percentage: the ratio of the currently used memory size to
the total available memory size on the server. In Linux, memory usage and
total available memory size can be obtained using commands like htop and
glances.
2If there is insufficient memory to initialize a container for a new function

on any server, and terminating executing containers is not permitted, or if the
function’s execution memory requirements exceed available memory, this will
result in a request failure.

Example 1 (Memory Sensitivity). Fig. 3 shows our experi-
mental results on PI4B with 1GB memory and Nano with 4GB
memory. We invoke a matrix multiplication function on PI4B

and an image classification function (using ShuffleNetV2 and

TensorRT) on Nano. When memory usage percentage varies,

on PI4B, the cold start latency and function execution time

can change by up to 5.29× and 5.31×, respectively. For Nano,
these can vary up to 3.64× and 9.31×. Moreover, the latency
and request failure have a sharp increase when memory usage

reaches nearly 80% and 70% for PI4B and Nano, respectively.

We also conducted experiments on the influence of CPU usage

on latency and failure rate, and found it much less sensitive

compared with the factor of memory usage. Due to limited

space, we omit the result here.
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(a) Matrix multiplication on PI4B
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(b) Image classification on Nano

Fig. 3. The variation of cold start latency, function execution time, and request
failure rate with the change of Memory usage percentage.

Request Relaying. In serverless edge computing, function
requests arrive at each edge server in a distributed manner.

When an infrequent function request arrives on one edge as a

cold start, a more cost-effective way might be not to initialize

its container locally but to send it to a nearby edge, which is

called request relaying. This becomes especially challenging
with the additional latency from Late-Warm and the variable

cold latency and execution time caused by Memory Sensitiv-

ity, elevating the difficulty of decision-making in the online

container caching algorithm.
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To address the above practical challenges in serverless edge

computing for executing IoT data processing tasks, we study

the online container caching problem with Late-Warm on

multiple edge servers. We propose a novel online algorithm

named OnCoLa to minimize the total latency of function

requests. In OnCoLa, we assign a priority to each container to
indicate its cost-effectiveness for reducing the total latency. We

implement and evaluate it with small-scale testbed experiments

using common IoT data processing tasks and large-scale

simulations based on real-world traces.

Our technical contributions are summarized as follows:

• Under a novel model taking Late-Warm and other practical

issues into account in executing IoT data processing tasks

on edge servers, we investigate the online container caching

problem on multiple edge servers to minimize the total

latency. We analyze its hardness and prove the lower bound

of the competitive ratio as Ω(TcK) for all deterministic
online algorithms, where Tc is the maximum cold start

latency of all containers, and K is the memory size. To the

best of our knowledge, we are the first to explicitly consider

Late-Warm for the online container caching problem.

• We propose an Online Container Caching policy with

Late-Warm, named OnCoLa, taking Late-Warm, memory
sensitivity, and request relaying into account. We further

theoretically prove its competitive ratio as O(T
3/2
c K).

• We implement OnCoLa on PI4B and Nano with the rep-

resentative serverless platforms as OpenFaaS and faasd,

and evaluate it under workloads consisting of common IoT

data processing tasks. The results demonstrate that OnCoLa
significantly reduces latency by 21.38% and reduces request
failure rate by up to 2.3× compared with the commonly

used fixed-duration container caching policy. Through ex-

tensive large-scale simulations with AliFC trace and Azure

traces, we demonstrate that OnCoLa outperforms the SOTA
solution GD [49] and reduces the latency by up to 27.8%.

The remainder of this paper is organized as follows. Sec. II

introduces the background. Sec. III formalizes the problem,

while Sec. IV demonstrates OnCoLa and theoretical analysis.
Sec. V and Sec. VI further show the results of the experiment

on edge devices and the extensive simulations, respectively.

Sec. VII reviews the related work and we discuss the future

work in Sec. VIII. Finally, Sec. IX concludes this paper.

II. BACKGROUND

A. Serverless Computing

Serverless computing platforms, offering Function-as-a-

Service (FaaS) abstraction, enable tasks to be deployed as

serverless functions that are invoked by events such as request

arrivals or new data production. These serverless function

requests are managed in virtualized environments like contain-

ers [50]. In serverless computing, developers write function

codes for specific tasks. These functions are then deployed to

serverless platforms, which may be commercial (e.g., AWS
Lambda [51], Azure Functions [52]) or open-source (e.g.,
OpenWhisk [53], OpenFaaS [54]). The platform automatically

handles function initialization and execution in response to

events using containers and manages resource scaling. Post-

execution, the platform’s container caching policy determines

whether to retain or terminate the container. Unlike traditional

models, serverless functions are event-triggered, operating

only when needed, thus optimizing resource usage. This model

also spares developers from handling dependencies and allows

them to benefit from fine-grained dynamic resource scaling.

B. IoT Data Processing in serverless edge computing.

The event-driven execution paradigm and dynamically auto-

scaling resource management policy of serverless computing

motivate us to apply serverless to edge computing for execut-

ing event-driven and bursty IoT data processing tasks.

Fig. 4. IoT Data Processing in serverless edge computing.

Fig. 4 shows the components for executing IoT data pro-

cessing tasks in serverless edge computing that we discuss in

this paper. There are some IoT devices, such as two sensors,

one camera, and one smartphone. We use PI4B and Nano as

edge servers and employ lightweight containerd [55] as the

container runtime. We use OpenFaaS [54] as the serverless

platform on Nano, and its lighter version, faasd [56] on PI4B.

In this setup, when an IoT device generates a data processing

event, it triggers a request for a specific function (such as

Object Detection, Text to Speech and etc.). Upon receiving

this request, PI4B and Nano execute the function by initial-

izing a container in memory to handle the task. Serverless

Edge Computing [57]–[59] extends serverless computing to

the edge, where data is processed on edge servers near the

source. This approach reduces latency and bandwidth usage,

which are crucial for low-latency, real-time applications in IoT

and mobile computing. Moreover, serverless edge computing

enhances privacy by enabling local data processing.

C. Cold Start

Both the serverless in the cloud and at the edge face

cold start issues, which introduces extra latency for serverless

functions. For example, Fig. 5 shows the composition of

latency when we first request an image classification function

on Nano. A cold start typically involves several stages: check-

ing the availability of an initialized container, startup of the

container, preparing the language environment, and importing

the libraries. The extra cold start latency is 2.75 seconds and
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the function execution time is 6.45 seconds. The extra cold
start latency is 29.89% of the total latency. This additional la-

tency is critical in low-latency applications like real-time data

processing and interactive services, impacting user experience

and performance. Therefore, optimizing serverless computing

requires mitigating cold starts, which can be achieved by two

main methods: reducing the occurrences of cold starts, and

reducing the duration of each cold start through accelerating

container initialization. In this paper, we focus on the first.

These two methods are orthogonal and complementary in

achieving the overall goal of cold start mitigation.

Fig. 5. The composition of latency.

III. SYSTEM MODEL AND PROBLEM FORMULATION

We provide the system model and problem formulation in

this section. Commonly used symbols are listed in Table I.

A. Model

System. Motivated by serverless edge computing, this

study focuses on a system comprising multiple edge servers.

Specifically, the system consists of N edge servers, S =
{s1, s2, . . . , sN}, where the memory size of each server is
Ki, i = 1, 2, . . . , N . We set K = maxi Ki. The request of

function fi ∈ F ( F = {f1, f2, . . . }) is assumed to execute in
its own container cfi . Whenever a function fi is requested, its
corresponding container cfi needs to be initialized to execute
the function. We assume that edge servers are interconnected

by a local area network and thus, the communication latency

between them is negligible.

Container. In this paper, we assume that each function re-
quest is executed in its own container. A container in memory

can be in one of three states at any time: initializing, initialized,
or executing. An initializing container is a container that has
not finished its initialization and cannot execute any functions.

An initialized container is a container that has been initialized,
but has no function requests at the moment. It can also be

called an idle container. An executing container is a container
that is executing a function.3 A container that is initialized

or executes a function is called a warm container, which
represents an already initialized environment for the requests

of the same function. Generally, we use zfi to represent the
memory footprint of container cfi . Specifically, zefi denotes
the memory footprint when the container is in the executing

state, and zpfi represents the footprint when the container is in
the initializing or initialized state. For convenience, we use cf
to represent cfi , zf to denote zfi , zef to denote zefi , and zpf
to denote zpfi . We assume that all memory sizes are integers

3In serverless computing, multiple concurrent requests of the same function
can be handled in a single container or by initializing multiple containers,
depending on the auto-scaling policy of the serverless platform.

without loss of generality. The sum of the container sizes on

each edge server must not exceed its memory capacity.
TABLE I

LIST OF SYMBOLS

Notation Description

S The set of edge servers, S = {s1, s2, . . . , sN}
F The set of functions, F = {f1, f2, . . . }
R The sequence of function requests,

R = (r1, r2, . . . ), r := (s, f) ∈ S × F
cf The corresponding container to execute function f

zef The memory footprint when container cf is in the
executing state

zpf The memory footprint when container cf is in the
initializing or initialized state

tef The function execution time of f

tcf The latency for initializing container cf , i.e., cold
latency

pcf The priority of container cf

Request. Let R = (r1, r2, . . . ) be the sequence of function
requests. We represent a request as a pair (s, f) ∈ S × F ,
meaning the request of function f on edge server s. All
function requests arrive in an online manner, that is, we can

not get future information and we make no assumptions on

the arrival patterns. We divide time into slots of unit size.

Multiple different kinds of function requests might come

within one time slot, however, each function f ∈ F can be

requested at most once in each slot. We use tef to indicate
the execution time of f , and tcf to indicate the latency for
initializing the container cf (i.e., cold latency), and tef and tcf
vary with memory usage. We set Tc = maxi tcfi . As shown in
Fig. 6, in a serverless edge computing system that has multiple

edge servers, there are four different outcomes for processing

request r := (s, f) based on the state of cf , and resulting in
different latency4:

• Cold Start (e.g., r2): If cf is not in the memory of s,
one option is to initialize a new container on s, known
as Cold Start. If there is insufficient memory available,

containers will be terminated5. The latency for processing

request r consists of the execution time of function f and

the initialization latency, represented as tef + tcf .
• Late-Warm (e.g., r4): If the state of cf in the memory of edge
server s is initializing, we call it Late-Warm. The latency for
processing request r includes the execution time of function
f and the waiting time for cf to finish initializing, denoted
as tef + tqf , where 0 < tqf < tcf .

• Warm Start (e.g., r3): When there is an already initialized
container cf for the request of f , it is known as a Warm
Start. The latency for processing this request is the execution

time of f , tef .

4In this paper, relaying request r to another server and initializing a new
container is not allowed, as it may fill up all servers’ memory, causing high
execution time and cold latency.
5If all the containers are executing and not allowed to terminate, resulting

in a request failure, we discuss this in section VIII.
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• Relay (e.g., r1): If cf does not exist in the memory of edge
server s, but there is an initialized cf on another edge server,
s′, one option is to relay request r to s′ for processing,
referred to as Relay. The latency for processing r would
then be the time to execute function f , denoted as tef .

Fig. 6. Container caching on multiple edge servers with 4 different cases:
Relay, Terminate & Cold Start, Warm Start and Late-Warm.

B. Problem Formulation
The objective of this problem is to minimize the total latency

for processing all function requests. Let tr:=(s,f) denote the

latency incurred by processing the request r := (s, f).

Problem P:

minimize
∑
r∈R

tr:=(s,f)

s.t.
∑

cf in server si

zf ≤ Ki ∀i ∈ {1, 2, . . . , N}
(1)

For the hardness of Problem P, its simplified version, where

each container is of uniform size, has been proved NP-

Complete [60]. Further, we have the following theorem.

Theorem 1. All online algorithms for Problem P have a
competitive ratio lower bound as Ω(TcK), Tc and K are the
maximum container cold start latency and the memory size,
respectively.

Proof. We use pure and bursty requests. A pure request for

fi on server s has Tc + 1 slots, with fi on s in the first slot
and no requests in the rest. A bursty has 2Tc slots, with fi on
s in the first Tc slots and no requests in the rest. The latency

is tef for warm pure requests, tef + tcf for cold pure requests,

Tct
e
f for warm bursty requests, and Tct

e
f +

tcf (t
c
f+1)

2 for cold

bursty requests. Let rpi and rbi be pure and bursty requests for
fi. Assume K + 1 different functions are requested.
Let A be an online algorithm for problem P. We assume that

the containers of functions f1, . . . , fK , i.e., cf1 , . . . , cfK have

been initialized initially. The constructor first pure requests

rpK+1, which terminates one container from cf1 , . . . , cfK . Then
it repeats bursty requests for K times. The j-th bursty request
is rbij , where cfj is the terminated container before the request.

So, for A , each bursty request has latency Tct
e
f +

tcf (t
c
f+1)

2 ,

and the total latency of A is tcf + tef +K(Tct
e
f +

tcf (t
c
f+1)

2 ), the

total cold latency is tcf +K
tcf (t

c
f+1)

2 . However, for the optimal

algorithm, the total latency is tcf + tef +KTct
e
f , and the total

cold latency is tcf . Therefore, the competitive ratio is bounded
by Ω(TcK).

IV. ONLINE ALGORITHM

In this section, we propose OnCoLa, an online container
caching algorithm that supports relaying on multiple edge

servers with Late-Warm. We design a priority pcf to rep-

resent the cost-effectiveness of container cf in reducing to-
tal latency. We first present the framework of OnCoLa to

handle relaying and terminating containers by using priority

in Sec. IV-A. Then, we introduce the detailed design of

the priority in Sec. IV-B. We also prove that OnCoLa is

O(T
3/2
c K)-competitive in Sec. IV-D.

A. Online Container Caching on Multiple edge servers

In the online container caching problem on multiple edge

servers, the key challenges involve relaying or locally pro-

cessing requests and selecting containers to terminate under

memory insufficiency. The primary approach used by OnCoLa
to address these challenges at hand is that it prioritizes caching

containers that offer a greater reduction in latency for each

unit of memory used. To accomplish this, we assign a priority

value pcf to each container cf , and the specific details on
how we determine this priority are described in Sec. IV-B.

Request frequency is also an important factor to consider

while selecting containers for termination when memory is

insufficient [49], [61], [62]. OnCoLa takes this into account in
two ways, via Line 26 in Algorithm 1 for containers cached in

memory but not currently requested, and through Algorithm 2

for containers corresponding to the current request.

Algorithm 1 shows the details of OnCoLa, for an online
arriving function request r := (s, f), based on the state of cf ,
and each container’s priority, executes r result in Warm, Late-
Warm, Cold Start or Relay. Initially, the memory for caching

containers is empty (Line 2). At any time T , the container
states are updated, and it is checked if all buffered requests

for f on s can be executed (Line 6 to 11). When a new request
r := (s, f) for function f arrives at s, the state of container
cf on s is checked. If the state is INITED, i.e., the state of cf
is initialized or executing, it is a Warm start (Line 14). If cf
is still initializing, it is a Late-Warm (Line 16). When cf does
not exist on s, if there is an edge server s′ that has cf and
cf with the lowest priority on s, r is relayed to s′ (Line 18
to 19). Next, if it has not been relayed to other servers, and

there is insufficient memory to start a new container, the lowest

priority container(s) are terminated to release memory (Line 23

to 25). The priority of each container is decreased by pmin,

i.e., decrease the priorities of the containers cached in memory
but not currently requested (Line 26). Then cf is initialized
on s, which is a Cold Start (Line 28 to 30).

B. Priority

In the online container caching problem on edge servers,

since containers have varied cold start latency, execution time,

and memory footprints, it is crucial to evaluate how caching

different containers impacts the total latency quantitatively.

In OnCoLa, we address this by assigning a priority pcf to
each container cf to indicate its cost-effectiveness, represented
as the ratio of latency reductions to memory footprint. The
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Algorithm 1: OnCoLa
1 Input Request r := (s, f), Priority pcf , zf = zef ;

2 C ← ∅, C represents the containers cached in the
memory of s;

3 Initializing containers CInit ← ∅, (s, cf , t) ∈ CInit means
container cf will be fully initialized on s at time t;

4 Timer T ← 0;
5 while True do
6 for (s, cf , t) ∈ CInit do
7 if t <= T then
8 if cf .state = INITING then
9 cf .state← INITED;
10 C ← C ∪ {cf};
11 Serve all the buffered requests for f on s;

12 while new request r := (s, f) for function f on s
arrive at T do

13 if cf .state = INITED then // Warm
14 Execute f in cf on s with latency tef ;

15 if cf .state = INITING then // Late-Warm
16 Execute f in cf on s at time t with latency

t − T + tef ;

17 if cf .state = OUT then
18 if there is a server s′ has cf and pcf is the

lowest in s then // relay
19 Relay r := (s, f) to s′ with latency tef ;

20 else
21 while remain size of s < zf do
22 if pcf′ is the lowest priority then
23 pmin = pcf′ ;

24 Terminate cf ′ on s, C \ {cf ′};
25 cf ′

state
← OUT;

26 For container cf ∈ C, pcf = pcf − pmin;

27 pmin ← 0;
28 cf .state← INITING// ColdStart;
29 CInit ← CInit ∪ {(s, cf , T + tcf )};
30 Initializing cf on s with tef + tcf ;

31 UpdatePri(s, f);

32 T ← T + 1;

intuition behind the priority is OnCoLa prefers to cache those
containers that offer greater latency reduction per unit of mem-

ory used in memory. When faced with memory insufficient,

OnCoLa terminates the container with the lowest priority,

allowing for greater latency reduction with less memory use.

The method to calculate pcf is detailed in Eqn. 2, incorporates
estimates of latency reduction and memory footprint as the

numerator and denominator, respectively. Next, we detail how

we estimate the latency reduction and the memory footprint.

As shown in Eqn. 2, (1− γ) · (tcf 2+ tcf tef )+ γ · cf .AvgLate

represents the estimation of latency reduction for cf , while zf
denotes the estimation of its memory footprint. The rationale

for calculating these estimations is detailed as follows.

pcf =
(1− γ) · (tcf 2 + tcf tef ) + γ · cf .AvgLate

zf
. (2)

tcf
2 + tcf tef : In serverless edge computing, before the con-

tainer cf is fully initialized, the outcome of requests for

function f is Late-Warm rather than Warm Start. Requests

might experience a maximum waiting time of tcf before

processing begins. So, for a Cold Start, in the worst case, if

tcf requests for f within the next tcf time, the total latency is
(tcf+1)t

c
f/2+tef tcf . This means that if cf is cached in memory,

the maximum latency reduction could be (tcf +1)t
c
f/2+ tef tcf .

To simplify the expression, we use tcf
2 + tcf tef to estimate the

latency reduction for caching cf in memory.
cf .AvgLate: As Fig. 3 shows, the cold latency tcf varies.

Moreover, the skewed popularity of requests for different func-

tions means that not all requests will experience the worst case.

Hence, using only tcf
2+ tcf tef to estimate the latency reduction

for caching cf in memory is not appropriate. We calculate
cf .AvgLate in Line 3 to 8 in Algorithm 2, representing the

average latency caused by a cold start of cf during online

function request processing. This value is based on the actual

latency observed during online execution rather than a fixed

value. On the other hand, tcf
2 + tcf tef captures the maximum

case. To incorporate both maximum case and online execution,

we compute cf .cost = (1−γ) ·(tcf 2+tcf tef )+γ ·cf .AvgLate as
the estimation of latency reduction of caching cf in memory,
using γ to balance between the two methods.

zf : We use zf to estimate the memory footprint of container
cf , which depends on its state. When a container is initialized
but not executing, its memory footprint zpf is the minimum re-
quired to store its virtual environment configuration and meta-

data. When a container is executing, its memory footprint zef
depends on the function code running inside. Our experiments

on Nano show that the difference between zef and zpf can be up
to 100×, as Table II shows. Therefore, it is not appropriate to
use zef or zpf alone as the memory footprint of cf , but instead,
we use zf . Specifically, zf = Rrun · zef +max(1−Rrun, 0) · zpf .
Here, Rrun represents the proportion of time that cf has been
in the executing state since it was fully initialized.6

C. Memory Adjustment

Additionally, as a component of OnCoLa, we propose a
conservative memory adjustment method to prevent sudden

increases in executing time tef , cold latency tcf , and request
failures. This method comprises two components: profiling

memory thresholds for different servers, and enabling memory
growth on servers experiencing dense request arrivals to pre-
vent overly conservative memory thresholds. Specifically, we

profile the memory usage percentage Mth of different servers

6Rrun can exceed 1 when a container in the executing state processes
multiple function requests for the same function by forking new processes,
such as “fork fprocess” in OpenFaaS [63].
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Algorithm 2: UpdatePri
1 Input Edge Server s, function f
2 if cf .state = OUT then
3 cf .cumLate← cf .cumLate+ tfc ;
4 cf .numLate← cf .numLate+ 1;

5 if cf .state = INITING then
6 cf .cumLate←

Total Late-Warm latency of all buffered requests;

7 cf .numLate← cf .numLate+ 1;

8 cf .AvgLate =
cf .cumLate

cf .numLate
;

9 cf .cost← (1− γ) · (tcf 2 + tcf tef ) + γ · cf .AvgLate;

10 Rrun =
Total time of cf executing f

Duration since cf initialized
;

11 zf = Rrun · zef +max(1− Rrun, 0) · zpf ;

12 pcf =
cf .cost

zf
;

during sudden increases, defined as more than a 20% growth

in tef , tcf , or request failures. We set the memory size Ka
i

for caching containers on server si as Ki · Mth. Here, Mth

is referred to as the initial memory threshold. To adjust the
memory size online, we maintain a ghost list [62]. When

container cf on server s is terminated, we add f to the ghost
list (without keeping cf in memory). If r = (si, f) re-arrives
within the cold start latency tcf and before this, there have been
no sudden increases in tef , t

c
f , and request failures, we increase

Ka
i by zef if Ka

i + zef ≤ Ki, we call it memory growth.

D. Theoretical Analysis

Lemma 1. OnCoLa is O(K)-competitive for container
caching without Late-Warm.

Proof. We use the potential function method [64] to prove this
Lemma. OPT is the optimal algorithm. We define the potential
function as follows:

Φ = (K − 1) ·
∑

cf∈Mem

pcf +K ·
∑

cf∈OptMem

pinitcf
− pcf

HereMem and OptMem indicate the memories of OnCoLa
and OPT, respectively. For containers not in memory, pcf = 0,
and pinitcf

is the priority of cf when it starts cold start. Initially,
Φ is zero, and finally, Φ ≥ 0, satisfying the requirements of a
potential function. For each request, we have:

• If OnCoLa initializes a container with pinitcf
, Φ decreases

by at least pinitcf
.

• If OPT initializes a container with pinitcf
, Φ increases by at

most K · pinitcf
.

• Otherwise, Φ does not increase.
These facts imply that the cost incurred by OnCoLa is

bounded by K times the cost incurred by OPT.
Next, we analyze in detail the impact of different cases on

Φ after receiving one request.

• OPT terminates a container cf : Φ does not increase.

• OPT initializes a container cf : Φ increases by at most K ·
pinitcf

.

• OnCoLa reduces the priority for all containers in Mem: Φ
decreases by at least 0.

• OnCoLa terminates a container cf : Φ is unchanged.
• OnCoLa realying the request from s to s′: Φ is unchanged.
• OnCoLa initializes the request container cf and sets pinitcf

:

Φ decreases by (K − 1)pinitcf
+Kpinitcf

= pinitcf
.

Thus, the cost incurred by OnCoLa is bounded by K times

the cost incurred by OPT, OnCoLa is O(K) - competitive for
container caching without Late-Warm.

Theorem 2. OnCoLa is O(T
3/2
c K)-competitive for container

caching with Late-Warm.

Proof. We define some notations for this proof. Let ALG(tcf )
and OPT(tcf ) be the total latency of OnCoLa and the offline
optimal in the online container caching model with Late-

Warm. Let MALG(tcf ) and MOPT(t
c
f ) be the total cost of

the online algorithm MALG and the offline optimal of online
container caching on multiple edge servers, where MALG
is c-competitive and tcf is the cost to start cf . We have
MALG(tcf ) ≤ c·MOPT(tcf ). In the proof, we use tc to present
tcf and te to present tef .

1. ALG(tc) ≤ MALG(t2c + tcte).
We define the request sequence of a function as all requests

to f from the cold start of cf to the next cold start or a

relaying for f . Each request sequence of f has one cold start
of cf and zero or more Late-Warm of f . Each initialization
of f causes at most tc − 1 Late-Warm, so the initialization
latency of each request sequence of f of ALG(tc) is at most
tc·(tc+1)

2 . The initialization cost of each request sequence of f
of MALG(t2c + tcte) is t2c + tcte. For each relaying of f , the
latency of f in OnCoLa is te, and the cost of f in MALG is

te. Thus, ALG(tc) ≤ MALG(t2c + tcte).
2. MOPT(t2c + tcte) ≤ Tc ·MOPT(tc + te).
In the model of online container caching on multiple edge

servers, let S1 and S2 request the same functions, with

initialize costs (w1, w2, . . . , wn) and (αw1, αw2, . . . , αwn)
in S1 and S2. Then MOPT(S1) = α · MOPT(S2). If
(w1, w2, . . . , wn) and (w

′
1, w′

2, . . . , w′
n) are the cold start costs

in S1 and S2, and wi ≤ w′
i for all i, then MOPT(S1) ≤

MOPT(S2). So, MOPT(t
2
c + tcte) ≤ Tc · MOPT(tc +

te), Tc = max tc.
3. MOPT(tc + te) ≤

√
Tc ·OPT(tc).

Like the proof above, we define the request sequence of f as
all requests to f from a cold start of cf to the next one. Each
request sequence of f has a cold start and zero or more Late-
Warm. Let n be the number of Late-Warm (0 ≤ n ≤ tc − 1)
and d1, d2, . . . , dn be their latencies. The average latency of

cold start and Late-Warm is at least
tc+te+

∑n
i=1 di

n+1 ≥ tc
n+1 +

te +
n
2 ≥ √

tc + te in OPT(tc). In the model without Late-
Warm, the average cost is tc + te for MOPT(tc + te), so
MOPT(tc + te) ≤ tc+te√

tc+te
· OPT(tc). Since tc ≥ 1, te ≥ 1,

the maximum of tc+te√
tc+te

is
√

tc, so MOPT(tc + te) ≤
√

Tc ·
OPT(tc), where Tc is the maximum of tc for all containers.
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Thus, ALG(tc) ≤ c ·MOPT(t2c + tcte) ≤ Tc · c ·MOPT(tc+
te) ≤ T

3/2
c · c ·OPT(tc). i.e., ALG(tc) ≤ T

3/2
c · c ·OPT(tc).

Since the competitive ratio of OnCoLa on the model with-
out Late-Warm is O(K), OnCoLa is O(T

3/2
c K)-competitive

for container caching with Late-Warm.

Message complexity. Since the serverless edge computing
system consists of N edge servers and one Relayer as shown

in Fig. 6. The Relayer maintains the container states of all edge

servers. According to Theorem 3, the message complexity is

O(cα ·min(N, mi)). Since the N edge servers and the Relayer

are connected in a local area network (LAN), the latency

of transmitting O(cα · min(N, mi)) messages is considered
negligible compared to the execution time and cold latency.

Theorem 3. The message complexity of OnCoLa is O(cα ·
min(N, mi)) at any timeslot i, where cα is a constant, mi ≤
|R|.
Proof. At times i, let the number of requests be mi, and

we have
∑

mi = |R|. For mi requests arriving on N edge

servers, assume each request leads to an edge server updating

container states at the Relayer, with a constant cα messages
per request. Then, with mi requests on N edge servers, the

message complexity is O(cα ·min(N, mi)).

V. IMPLEMENTATION ON REAL EDGE DEVICES

In this section, we implement and evaluate OnCoLa on an
edge cluster with PI4B and Nano [65]–[67]. We conducted

experiments on three types of workloads: Low, Medium

and High, consisting of 10 commonly used functions for
processing IoT data. The experimental results demonstrate

that OnCoLa significantly reduces latency by 21.38% and

reduces the request failure rate by up to 2.3× compared to

the commonly used fixed-duration container caching policy

(i.e., TTL policy [53], [54]).

A. Experimental Setup

Device and Platform. As shown in Fig. 7, our experiments
are conducted on an edge cluster of 4 PI4B and 4 Nano, with
another PI4B as the Relayer. PI4B is an edge device with

an ARM CPU (1.5GHz) and 1GB RAM, and Nano has an

ARM CPU (1.43GHz), 4GB RAM, and a GPU (921 MHz).
By default, the swap is turned off on all devices.

OnCoLa

Fig. 7. Overview of the edge cluster.

We deploy OpenFaaS [54] on Nano and faasd [56] on

PI4B, both using containerd [55] as the container runtime. We

enable GPU supported in OpenFaaS by mounting the nvidia-

container-runtime on Nano [68], [69]. We measure the relay

time for relaying requests from one device to the Relayer and

then to the target. Through hundreds of measurements, the

average relay time is only 16.96 milliseconds (ms), and even
under high memory usage percentage, it does not exceed 100
ms. We consider this negligible compared to cold latency and

function execution time.

Functions. In this experiment, as shown in Table II, we use
10 commonly used functions for IoT data processing as the
composition of the workload.

Workload. To evaluate the performance of OnCoLa under

different workload types, we generate three types of work-

loads, with each workload containing 80, 000 function requests
across the 10 functions and 8 devices. The IC function requests
cannot be processed on PI4B. The three workload types are:

• Low: 80% of requests are for 2 functions with small memory
footprints and short execution times, i.e., Node and Curl,
while the other 20% of requests are for the other functions.

The average inter-request interval is 0.5 seconds.
• Medium: Each function has 8000 requests, which are evenly
distributed to the 8 devices (except for IC). The average
inter-request interval is 0.5 seconds.

• High: The number of function requests is the same as
Medium. The average inter-request interval is 0.2 seconds.

B. Experimental Results

Average Latency. We compare OnCoLa (γ = 0.6, the
memory threshold for PI4B and Nano is 40% and 60%,
respectively) with the widely used TTL policy (which caches

the containers for 5 minutes). And the metric is the average
latency of all successfully completed requests. As Fig. 8

shown, OnCoLa reduces the latency by 10.16%, 21.38% and

14.75% for Low, Medium and High workloads, respectively.

Fig. 8. The normalized average latency under three different workloads.

The Ratio of Outcomes. Fig. 9(a) shows the ratios of Cold,
Relay, Late-Warm, Warm, and Fail for OnCoLa and TTL

under the three workloads. Fail represents the request failure

rate, indicating the percentage of failed function requests out of

the total number of requests, with their latency excluded from

the total. We observe that the request failure rate gradually

increases from Low to High workload for both OnCoLa and
TTL, and OnCoLa reduces the request failure rate by up to
2.3× compared to TTL. In the Low workload, both OnCoLa
and TTL exhibit a higher Warm Start ratio. In the High

workload, with an average inter-request interval of 0.2s and
more requests for functions with longer cold start latency, the

Late-Warm ratio for OnCoLa and TTL increases by 184.62%
and 76.92%, respectively, compared to the Low workload.
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TABLE II
FUNCTIONS USED IN EXPERIMENT ON PI4B AND NANO

Function
PI4B Nano

Description
Cold Exec Idle Size Exec Size Cold Exec Idle Size Exec Size

MM 1.312s 0.543s 20MB 110MB 2.125s 1.525s 25MB 104MB Matrix Multiplication.

FFT 1.420s 0.462s 22MB 69MB 1.620s 0.672s 25MB 78MB Fast Fourier transform.

STT 1.232s 0.925s 18MB 54MB 1.318s 1.120s 22MB 58MB Speech to Text.

AD 1.125s 0.8s 13MB 56MB 0.825s 0.625s 10MB 63MB Audio Denoising.

RSA 2.866s 1.2s 12MB 47MB 1.658s 1.336s 11MB 58MB Data Encryption and Decryption.

PCA 1.623s 3.623s 15MB 70MB 1.225s 2.812s 13MB 72MB Dimensionality Reduction.

RE 1.699s 2.256s 12MB 50MB 1.350s 1.813s 13MB 56MB Resizing images.

IC - - - - 2.749s 6.446s 10MB 1060MB Image Classification.

Node 1.010s 0.051s 16MB 20MB 1.323s 0.025s 19MB 21MB Monitor the cpu and memory of device.

Curl 1.332s 0.603s 6MB 8MB 1.414s 0.204s 6MB 8MB Get information about other devices.

Cold start latency, execution time (both under 60% memory usage), idle memory usage, executing memory usage and the description of
the functions.
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Fig. 9. Ratio of outcomes for processing requests.

The Ratio of Outcomes on Different Devices. Fig. 9(b)
presents the ratio of the outcomes on PI4B and Nano when

using OnCoLa. Under the Low workload, where 80% of

requests are for Node and Curl, both PI4B and Nano exhibit

a high Warm ratio of 55.77% and 65.12%, respectively.
However, under the Medium workload, the Fail ratio on Nano

reaches 12%, primarily due to more IC requests. Under the

High workload, the Fail ratio is 22%, and Late-Warm increases
to 57.78%, while only 0.44% are Warm on PI4B.
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Fig. 10. Impact of memory size of devices.

Impact of Memory Size of Devices. To evaluate the scalabil-
ity of OnCoLa regarding the memory size, we enabled swap
to extend the memory sizes of PI4B and Nano, incrementally

adding from 1GB to 4GB, termed as swap memory. Results
under three workloads are depicted in Fig.10. As the swap

memory size increases, allowing more containers to be cached

in memory, OnCoLa’s performance decreases but remains at
least 3.88% better than TTL. Fig.10(b) illustrates that with the

increase in swap memory, the proportion of Warm increases

while the proportion of Fail decreases.
Impact of γ. We vary the parameter γ from 0 to 1 to
evaluate the scalability of OnCoLa, as shown in Fig. 11.
Fig. 11(a) shows that a smaller γ results in better performance
of OnCoLa under the High workload. This is attributed to the
fact that in Eqn. 2, the latency reduction with the maximum

case is multiplied by 1− γ. The High workload is similar to
the maximum case. Conversely, for the Low workload, larger

γ enhances the performance of OnCoLa. For the Medium
workload, the performance of OnCoLa remains relatively

stable, showing no significant variation.
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Fig. 11. Impact of γ.

Impact of Memory Adjustment. In Sec. IV-C, we introduce
a memory adjustment method. To assess its effectiveness and

the scalability of OnCoLa in relation to the initial memory
threshold, we vary the threshold from 40% to 100%. In addi-
tion, we evaluate the efficacy of memory growth by comparing

OnCoLa with its variant, OnCoLa∗, which does not incor-
porate memory growth. We conduct these experiments under

three workloads, setting the TTL strategy’s initial memory

threshold in the same range. As Fig. 12(b) demonstrates,
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when we set the initial memory threshold no more than 60%,
OnCoLa experiences a higher failure rate than OnCoLa∗.
However, OnCoLa consistently achieves lower latency than

OnCoLa∗. This is because OnCoLa grows its memory size
under dense requests, leading to a larger memory size. More-

over, when the initial memory threshold exceeds 60%, we
observe a sudden increase in both latency and failure rates,

as OnCoLa stops further memory growth. Overall, Fig. 12

confirms the effectiveness of the memory adjustment method.

By limiting the initial memory threshold, we successfully

prevent sudden increases, effectively reducing the proportion

of request failures and the overall latency. Additionally, the

implementation of memory growth in OnCoLa plays a crucial
role in decreasing latency.
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Fig. 12. Impact of memory adjustment.

VI. EVALUATION

We evaluate the performance of OnCoLa using the AliFC
Trace [14], and the Azure Trace [43]. Compared with GD, the

state-of-the-art algorithm that deals with container caching in

serverless computing, OnCoLa can reduce the latency by up
to 27.8%. Compared with LLB, the algorithm that supports

relaying requests to other servers, it improves by 23.23%,
under the default setting. Through scalability analysis on the

number of edge servers, total memory size, initial memory

threshold, and γ, OnCoLa consistently outperforms baselines.

A. Methodology
The total memory size of edge servers in OnCoLa is

determined similarly to [70], which is the sum of the sizes

of containers corresponding to the most active functions. The

default configuration consists of 200 edge servers, and their
total memory size is calculated as the sum of the initialized

memory footprint of the top 40% active functions’ containers.

The default value for γ is 0.6. To handle varying memory sizes
among edge servers, we allocate the total memory size to N
edge servers using Eqn. 3, and the memory threshold is 60%
for each server. We categorize all edge servers into 5 types
numbered i, where edge servers with the same i%N have the

same memory size.

Ki = (i%N + 1)

⌈
Total Memory Size

(15	(N/5)
+ (1+N%5)(N%5)
2 )

⌉
. (3)

The metrics used to evaluate the performance of algorithms is

the total latency incurred of all requests, including the function

execution time and cold start latency.

Workloads. The AliFC trace contains 398, 172 requests for
3122 functions, while the Azure trace has 59, 312 requests
for 200 functions used in our simulations. Since both traces
originate from serverless computing and lack edge server

information for the requests, we use the Machine ID from

Google’s trace [71], and use Machine ID modular N as the

edge server. The two traces differ in average request locality

and average Late-Warm intensity. We define the request local-

ity of a request sequence as the ratio of consecutive requests

for the same function to the total requests on an edge server,

with average request locality as the mean across total servers.

The Late-Warm intensity is the ratio of Late-Warm requests

out of all requests when caching all requested containers

in memory on an edge server, and the average Late-Warm

intensity is the mean across total servers. With 200 servers,
the AliFC trace has an average request locality of 0.161 and
a Late-Warm intensity of 0.159, while the Azure trace has a
request locality of 0.096 and a Late-Warm intensity of 0.485.

B. Baselines
We compare the performance of OnCoLa with LRU [72],

TTL [53], LRU-MAD [70], GD [49] and LLB [73]. To verify

the effectiveness of OnCoLa in handling memory-sensitive,

we also include OnCoLa− as a baseline.7

C. Experiment Results

Overall performance. We first evaluate the overall perfor-
mance of OnCoLa and compare it with baselines, using default
setting. The experimental results are shown in Fig. 13, where

the total latency of each algorithm is normalized relative to

LRU (set to 100%). The experiments in both traces show
that among all baselines except OnCoLa−, LLB performs the
best, with its improvement attributed to relaying requests to

other servers. Compared to LLB, OnCoLa demonstrates per-
formance improvements of 23.23%, adopting priorities more
suitable for multiple servers with Late-Warm. Furthermore,

compared to GD, OnCoLa leverages cooperation among edge
servers and utilizes priorities tailored for serverless edge

computing, achieving latency improvements of 27.8%.
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Fig. 13. Overall performance.

Ingredient of Latency. Fig. 14 shows the ratios of Cold
Start, Relay, Late-Warm, and Warm Start for each algorithm,

revealing that Warm and Relay ratios significantly impact per-

formance. In AliFC trace, GD, OnCoLa−, and OnCoLa have
the highest warm ratios (around 62%). OnCoLa has a higher

7OnCoLa− does not consider the impact of memory usage on execution
time and cold start latency, and it does not estimate the actual container
footprint.
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Cold Start ratio due to its memory threshold, accommodating

fewer containers. However, it estimates the actual memory

footprint after the container has been initialized, ensuring its

Warm Start ratio is no less than OnCoLa−’s.
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Fig. 14. Ratio of Cold-Start, Relay, Late-Warm, and Warm.

D. Scalability Analysis

In this subsection, we use the latency improvement relative

to LRU to measure the performance of the algorithm, a higher

latency improvement means better performance.

Latency Improvement of A =
Latency(LRU)− Latency(A)

Latency(LRU)
.

Total Memory Size. To assess the scalability of OnCoLa in
terms of total memory size, we vary it from 10% to 90%
and display the results in Fig. 15. When the total memory

size is small, OnCoLa exhibits higher improvement than other
baselines. However, with sufficient memory to cache frequent

containers, all algorithms’ performances converged, especially

in the AliFC trace.
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Fig. 15. Impact of total memory size.
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Fig. 16. Impact of the number of edge servers.

Number of Edge Servers. To assess OnCoLa’s scalability,
Fig. 16 examines the effect of changing the number of edge

servers. OnCoLa consistently outperforms other algorithms

with server counts ranging from 100 to 1000. With total
memory size constant, more servers mean less memory per

server. In the AliFC trace, OnCoLa gains from request relay-

ing among multiple servers, enhancing performance as server

numbers increase. In the Azure trace, however, performance

drops due to the reduced per-server memory limiting container

storage. This experiment, conducted under a fixed total mem-

ory size, primarily explores how increasing server numbers

affect algorithm performance. If the per-server memory also

increases with more servers, i.e., the total memory size ex-
pands, the results would mirror those in Fig. 15.

Parameter γ. We vary γ from 0 to 1 to investigate the
scalability of OnCoLa, as shown in Fig. 17. In the Azure
trace, the performance of OnCoLa fluctuates with changes

in γ, reaching its optimum at γ = 0.6. However, in the
AliFC trace, OnCoLa begins to underperform compared to

OnCoLa− when γ exceeds 0.6, and the performance degrades
further as γ increases. The role of γ is to adjust the estimation
of latency reduction based on online execution from a cold

start. The limited impact of γ in the AliFC trace is reasonable
due to the smaller average Late-Warm intensity compared to

the Azure trace.
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Fig. 17. Impact of γ.

Memory Adjustment. To assess the effectiveness of the mem-
ory adjustment method and the scalability of OnCoLa, we vary
threshold from 40% to 100%. We also assess the impact of
memory growth by comparing OnCoLa with OnCoLa∗, which
lacks the memory growth feature. This evaluation involved

setting LRU’s memory threshold within the same range. As

shown in Fig.18, OnCoLa’s performance starts to decline
when the threshold exceeds 80%, indicating that limiting the
initial memory threshold is effective. Fig.18(a) shows that the

impact of memory growth is more pronounced in the AliFC

trace due to its higher average request locality compared to

the Azure trace, making memory growth more likely to occur.
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Fig. 18. Impact of memory adjustment.

1557

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on November 22,2024 at 14:26:04 UTC from IEEE Xplore.  Restrictions apply. 



VII. RELATED WORKS

A. Data Management and Processing in Serverless Computing
Serverless computing, known for its elasticity, ease of use,

and fine-grained billing, is increasingly adopted for analytical

query engines. For instance, Pixels-Turbo, proposed by Bian et
al. [74], is a hybrid query engine that leverages scalable VM
clusters for standard operations and functions for unpredictable

workload spikes. Justen [24] employs elastic query processors

in a serverless framework to improve data exchange effi-

ciency. Spiegelberg et al. [75] enhance performance and cost
efficiency in serverless data analytics through adaptive code

generation and compilation. Burckhardt et al. [27] introduce
Netherite for optimizing serverless workflow execution on

elastic clusters. Meanwhile, Yu et al. [29] focus on data-centric
function orchestration for complex data processes, and Ali et
al. [26] optimize batching for ML inference requests.

B. Container Caching
Major serverless platforms like AWS and Azure use a fixed

duration caching policy [51]. FaaSCache [49] uses a Greedy-

Dual keep-alive policy considering the request frequency and

function patterns. Shahrad et al. [43] propose a practical
resource management policy for container caching and pre-

warming. Since the requests for functions are arriving in

an online manner, the online file caching policies can be

used in container caching. The classical work by Sleator

and Tarjan [72] introduced the notion of competitive analy-

sis for online paging algorithms. Later works extended the

problem to non-uniform file size and fetch cost [46], [76]–

[79], multiple caches and request relaying [47], and machine

learning advice [48], [80]. In this paper, we focus on container

caching in serverless edge computing, which faces challenges

from varying cold start latency and execution time due to

limited resources (Memory Sensitivity), as well as the need for

Request Relaying across multiple servers and the additional

latency caused by Late-Warm. Existing online file caching

algorithms typically assume constant retrieval latency, and

container caching policies for powerful servers often neglect

edge-specific constraints. We introduce OnCoLa, a novel
approach that assigns a priority to each container, effectively

dealing with these three challenges all at once with the

competitive ratio. We summarize the related work in Table III.

TABLE III
RELATED WORK OF CACHING PROBLEMS

Algorithms

C
o
n
tain

er
fo
o
tp
rin
t

L
ate-W

arm

R
eq
u
est

R
elay

in
g

M
em
o
ry

S
en
sitiv

ity

P
erfo

rm
an
ce

G
u
aran

tee

LRU [72] Uniform � � � O(K)

GD [49] Uniform � � � -

Landlord [46] Non-uniform � � � O(K)

LLB [73] Non-uniform � � � O(K)

LRU-MAD [70] Uniform � � � -

OnCoLa [this work] Non-uniform � � � O(T
3/2
c K)

VIII. DISCUSSION

More Computing Model. In this paper, we investigate the
online container caching problem to improve the performance

of executing IoT data processing tasks on multiple edge

servers. In this scenario, we observe that resource-limited

edge servers introduce additional challenges to designing

the online container caching algorithms, such as Late-Warm,

Memory Sensitivity, and Request Relaying. To address these

challenges, we propose a novel algorithm OnCoLa. OnCoLa
can be applied to various scenarios with multiple servers

or resource-limited servers, such as serverless computing,

cluster computing, cloud-edge hybrid computing, and mobile

computing. OnCoLa can adapt the priority calculation and

updating algorithm to suit the needs of each scenario to ensure

performance. Additionally, this paper focuses on IoT and

edge devices within a LAN, overlooking dependencies and

data transmission latency critical in broader applications like

machine learning. Future work could integrate dependencies

and data transmission based on network conditions.
Request Queuing and Waiting Latency. As shown in Fig. 1,
requests arriving at T2, T3, and T4 are all Late-Warm, and

we assume they will all be executed at T5 with no additional

queuing latency. This assumption is reasonable as multiple

requests for the same function can be processed concurrently

in a single container [63]. Depending on the auto-scaling

policy of the platform, it is also possible to execute multi-

ple requests by initializing multiple containers or queuing a

process. Moreover, if all edge servers’ memory is used by

executing containers, requests for new functions fail due to

memory insufficient, i.e., we adopt a strict timeout policy in
this paper. If the timeout policy is relaxed, requests can wait

for memory to be freed with waiting latency. A future direction

is considering queuing and waiting latency when auto-scaling

and request timeout policies change.
IX. CONCLUSION

This paper investigates the online container caching problem

in serverless edge computing. We highlight the new challenges

of designing an online caching algorithm with resource-limited

edge servers, including Late-Warm, Memory-sensitivity, and

Request Relaying. We propose an O(T
3/2
c K)-competitive al-

gorithm, OnCoLa, to address these challenges. We implement
OnCoLa and conduct experiments on edge devices to validate
the improvement over the current policy. We conduct extensive

simulations based on real-world traces and show that OnCoLa
outperforms baselines. Serverless edge computing is still in its

early stages, we hope this work can contribute to implementing

the serverless paradigm in large-scale edge systems.
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